CloudTadaInsights

DevSecOps Compliance and Governance

DevSecOps Compliance and Governance

Overview

DevSecOps compliance and governance ensure that security practices align with regulatory requirements, industry standards, and organizational policies. This article explores how to maintain compliance in automated environments while preserving the agility and speed that DevSecOps enables.

Understanding Compliance in DevSecOps

The Challenge of Compliance in Agile Environments

Traditional Compliance Models vs. DevSecOps

Traditional compliance approaches often conflict with DevSecOps principles:

Waterfall vs. Agile Compliance
  • Traditional: Annual or quarterly compliance assessments
  • DevSecOps: Continuous compliance monitoring
  • Impact: Need for real-time compliance verification
Manual vs. Automated Controls
  • Traditional: Manual evidence collection and assessment
  • DevSecOps: Automated control monitoring and reporting
  • Impact: Shift from point-in-time to continuous assurance
Static vs. Dynamic Infrastructure
  • Traditional: Static infrastructure with known configurations
  • DevSecOps: Dynamic, ephemeral infrastructure
  • Impact: Need for infrastructure monitoring and configuration management

Compliance Framework Alignment

SOX (Sarbanes-Oxley Act)

SOX compliance in DevSecOps environments requires:

  • Access Controls: Automated IAM management and monitoring
  • Change Management: Automated change tracking and approval
  • Segregation of Duties: Automated role separation in CI/CD pipelines
  • Documentation: Automated evidence collection and retention
HIPAA (Health Insurance Portability and Accountability Act)

HIPAA compliance in DevSecOps requires:

  • Data Protection: Automated encryption and access controls
  • Audit Trails: Automated logging and monitoring of data access
  • Incident Response: Automated breach detection and reporting
  • Business Associate Agreements: Automated vendor compliance verification
PCI-DSS (Payment Card Industry Data Security Standard)

PCI-DSS compliance in DevSecOps requires:

  • Network Security: Automated firewall and segmentation controls
  • Data Protection: Automated encryption of cardholder data
  • Vulnerability Management: Automated scanning and patching
  • Access Control: Automated user provisioning and de-provisioning
GDPR (General Data Protection Regulation)

GDPR compliance in DevSecOps requires:

  • Data Minimization: Automated data classification and retention
  • Consent Management: Automated consent tracking and withdrawal
  • Right to Erasure: Automated data deletion processes
  • Data Portability: Automated data export capabilities

Continuous Compliance Philosophy

From Point-in-Time to Continuous

Traditional compliance models provide point-in-time assurance, while DevSecOps requires continuous compliance:

Point-in-Time Compliance
  • Annual Audits: Compliance verified at specific points in time
  • Manual Evidence: Collected manually for audit periods
  • Static Controls: Controls tested at specific intervals
  • Periodic Reports: Compliance status reported periodically
Continuous Compliance
  • Real-time Monitoring: Ongoing compliance status monitoring
  • Automated Evidence: Continuous evidence collection
  • Dynamic Controls: Controls monitored and adjusted in real-time
  • Instant Reporting: Real-time compliance status reporting

Compliance as Code

Infrastructure Compliance

Implement compliance controls as code:

HCL
# Example: AWS compliance with Terraform
resource "aws_s3_bucket" "secure_bucket" {
  bucket = var.bucket_name
  
  # Compliance requirement: Enable server-side encryption
  server_side_encryption_configuration {
    rule {
      apply_server_side_encryption_by_default {
        sse_algorithm = "AES256"
      }
    }
  }
  
  # Compliance requirement: Enable versioning
  versioning {
    enabled = true
  }
  
  # Compliance requirement: Enable logging
  logging {
    target_bucket = aws_s3_bucket.log_bucket.id
    target_prefix = "log/"
  }
  
  # Compliance requirement: Block public access
  block_public_acls       = true
  block_public_policy     = true
  ignore_public_acls      = true
  restrict_public_buckets = true
}

# Example: Compliance check with Checkov
resource "aws_iam_role" "compliant_role" {
  name = "compliant-role"
  
  # Compliance requirement: Least privilege access
  assume_role_policy = jsonencode({
    Version = "2012-10-17"
    Statement = [
      {
        Action = "sts:AssumeRole"
        Effect = "Allow"
        Principal = {
          Service = "ec2.amazonaws.com"
        }
      }
    ]
  })
  
  # Compliance requirement: No inline policies (for audit trail)
  # Attach managed policies separately
}

# Managed policy with specific permissions
resource "aws_iam_role_policy_attachment" "attach_policy" {
  role       = aws_iam_role.compliant_role.name
  policy_arn = "arn:aws:iam::aws:policy/ReadOnlyAccess"
}
Application Compliance
PYTHON
# Example: Application compliance with security controls
import os
import logging
from functools import wraps
from flask import Flask, request, g
import jwt
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from cryptography.hazmat.backends import default_backend

app = Flask(__name__)

# Compliance: Audit logging decorator
def audit_log(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        # Log access for compliance
        logging.info(f"Access to {request.endpoint} by {request.remote_addr} at {request.timestamp}")
        
        # Add compliance metadata
        g.audit_id = os.urandom(16).hex()
        
        result = func(*args, **kwargs)
        
        # Log completion
        logging.info(f"Completed {request.endpoint} with audit_id {g.audit_id}")
        
        return result
    return wrapper

# Compliance: Data protection middleware
@app.before_request
def compliance_check():
    # Check for compliance requirements
    if request.method in ['POST', 'PUT', 'PATCH']:
        # Ensure sensitive data is encrypted
        if 'sensitive_data' in request.form:
            # Log for compliance that sensitive data was detected
            logging.warning(f"Sensitive data detected in {request.path}")
    
    # Ensure authentication for protected endpoints
    if request.endpoint in app.config.get('PROTECTED_ENDPOINTS', []):
        token = request.headers.get('Authorization')
        if not token:
            logging.warning(f"Unauthorized access attempt to {request.endpoint}")
            return {'error': 'Authentication required'}, 401

# Compliance: Data retention policy
def enforce_data_retention(data, retention_period_days=365):
    """
    Enforce data retention policy as per compliance requirements
    """
    import datetime
    
    cutoff_date = datetime.datetime.now() - datetime.timedelta(days=retention_period_days)
    
    # Filter data based on retention policy
    filtered_data = [item for item in data if item.created_date > cutoff_date]
    
    # Log for compliance that data retention was applied
    logging.info(f"Applied data retention policy, removed {len(data) - len(filtered_data)} records")
    
    return filtered_data

# Compliance: Personal data handling
class PersonalDataManager:
    def __init__(self):
        self.encryption_key = os.environ.get('PERSONAL_DATA_ENCRYPTION_KEY')
    
    def encrypt_personal_data(self, data):
        """
        Encrypt personal data as per GDPR compliance
        """
        # Implementation of encryption
        encrypted_data = self._encrypt(data, self.encryption_key)
        logging.info("Personal data encrypted for GDPR compliance")
        return encrypted_data
    
    def right_to_erasure(self, user_id):
        """
        Implement right to erasure as per GDPR
        """
        # Delete all personal data for user
        deleted_count = self._delete_personal_data(user_id)
        logging.info(f"Erased {deleted_count} personal data records for user {user_id} as per GDPR Article 17")
        return deleted_count
    
    def data_portability(self, user_id):
        """
        Implement data portability as per GDPR
        """
        user_data = self._get_personal_data(user_id)
        portable_data = self._format_for_portability(user_data)
        logging.info(f"Exported personal data for user {user_id} as per GDPR Article 20")
        return portable_data

Compliance Automation Framework

Automated Compliance Monitoring

Continuous Compliance Engine

PYTHON
# Example: Continuous compliance monitoring engine
import asyncio
import json
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Any
import boto3
from azure.identity import DefaultAzureCredential
from google.cloud import securitycenter

class ContinuousComplianceEngine:
    def __init__(self):
        self.aws_client = boto3.client('config')
        self.azure_credential = DefaultAzureCredential()
        self.gcp_client = securitycenter.SecurityCenterClient()
        self.compliance_rules = self.load_compliance_rules()
        self.alert_channels = self.setup_alert_channels()
        
    def load_compliance_rules(self) -> Dict[str, Any]:
        """
        Load compliance rules from configuration
        """
        # Load rules from compliance framework files
        rules = {}
        for framework in ['SOX', 'HIPAA', 'PCI-DSS', 'GDPR']:
            with open(f'compliance-rules/{framework.lower()}.json', 'r') as f:
                rules[framework] = json.load(f)
        return rules
    
    async def monitor_aws_compliance(self) -> List[Dict[str, Any]]:
        """
        Monitor AWS compliance in real-time
        """
        compliance_results = []
        
        # Get AWS Config compliance data
        response = self.aws_client.describe_compliance_by_config_rule()
        
        for rule in response['ComplianceByConfigRules']:
            rule_name = rule['ConfigRuleName']
            
            # Check against compliance rules
            for framework, rules in self.compliance_rules.items():
                if rule_name in rules:
                    compliance_status = {
                        'timestamp': datetime.utcnow().isoformat(),
                        'resource_type': 'AWS',
                        'rule_name': rule_name,
                        'framework': framework,
                        'compliance_status': rule['Compliance']['ComplianceType'],
                        'details': rule
                    }
                    
                    compliance_results.append(compliance_status)
                    
                    # Log compliance status
                    if rule['Compliance']['ComplianceType'] != 'COMPLIANT':
                        logging.warning(f"Non-compliant AWS resource: {rule_name}")
                        
                        # Trigger alert if non-compliant
                        await self.trigger_compliance_alert(compliance_status)
        
        return compliance_results
    
    async def monitor_azure_compliance(self) -> List[Dict[str, Any]]:
        """
        Monitor Azure compliance in real-time
        """
        compliance_results = []
        
        # Use Azure Security Center API
        from azure.mgmt.security import SecurityCenter
        from azure.identity import DefaultAzureCredential
        
        credential = DefaultAzureCredential()
        security_client = SecurityCenter(credential, subscription_id=os.environ['AZURE_SUBSCRIPTION_ID'])
        
        # Get security recommendations
        recommendations = security_client.assessments.list()
        
        for rec in recommendations:
            compliance_status = {
                'timestamp': datetime.utcnow().isoformat(),
                'resource_type': 'Azure',
                'assessment_id': rec.id,
                'compliance_status': rec.status.code,
                'category': rec.category,
                'severity': rec.metadata.severity
            }
            
            compliance_results.append(compliance_status)
            
            if rec.status.code != 'Healthy':
                logging.warning(f"Non-compliant Azure resource: {rec.id}")
                await self.trigger_compliance_alert(compliance_status)
        
        return compliance_results
    
    async def monitor_gcp_compliance(self) -> List[Dict[str, Any]]:
        """
        Monitor GCP compliance in real-time
        """
        compliance_results = []
        
        # Use GCP Security Command Center
        org_id = f"organizations/{os.environ['GCP_ORGANIZATION_ID']}"
        response = self.gcp_client.list_assets(request={"parent": org_id})
        
        for asset in response:
            # Check compliance based on asset type and configuration
            compliance_result = self.evaluate_asset_compliance(asset)
            compliance_results.append(compliance_result)
            
            if not compliance_result['is_compliant']:
                logging.warning(f"Non-compliant GCP asset: {asset.name}")
                await self.trigger_compliance_alert(compliance_result)
        
        return compliance_results
    
    def evaluate_asset_compliance(self, asset: Dict[str, Any]) -> Dict[str, Any]:
        """
        Evaluate compliance of individual asset
        """
        asset_type = asset.asset_type
        compliance_result = {
            'timestamp': datetime.utcnow().isoformat(),
            'asset_name': asset.name,
            'asset_type': asset_type,
            'is_compliant': True,
            'violations': [],
            'frameworks': []
        }
        
        # Check against compliance rules based on asset type
        for framework, rules in self.compliance_rules.items():
            for rule in rules.get(asset_type, []):
                if not self.check_rule_compliance(asset, rule):
                    compliance_result['is_compliant'] = False
                    compliance_result['violations'].append(rule['id'])
                    compliance_result['frameworks'].append(framework)
        
        return compliance_result
    
    async def trigger_compliance_alert(self, compliance_status: Dict[str, Any]):
        """
        Trigger compliance alert through configured channels
        """
        alert_message = {
            'type': 'COMPLIANCE_VIOLATION',
            'timestamp': compliance_status['timestamp'],
            'resource': compliance_status.get('rule_name') or compliance_status.get('assessment_id'),
            'status': compliance_status.get('compliance_status'),
            'details': compliance_status
        }
        
        # Send alerts to all configured channels
        for channel in self.alert_channels:
            await channel.send_alert(alert_message)
    
    async def run_compliance_monitoring_cycle(self):
        """
        Run a complete compliance monitoring cycle
        """
        logging.info("Starting compliance monitoring cycle")
        
        # Monitor all cloud providers
        aws_results = await self.monitor_aws_compliance()
        azure_results = await self.monitor_azure_compliance()
        gcp_results = await self.monitor_gcp_compliance()
        
        # Aggregate results
        all_results = aws_results + azure_results + gcp_results
        
        # Generate compliance report
        report = self.generate_compliance_report(all_results)
        
        # Store compliance evidence
        self.store_compliance_evidence(report)
        
        logging.info(f"Compliance monitoring cycle completed: {len(all_results)} resources checked")
        
        return report
    
    def generate_compliance_report(self, results: List[Dict[str, Any]]) -> Dict[str, Any]:
        """
        Generate comprehensive compliance report
        """
        report = {
            'timestamp': datetime.utcnow().isoformat(),
            'total_resources': len(results),
            'compliant_resources': len([r for r in results if r.get('compliance_status') == 'COMPLIANT']),
            'non_compliant_resources': len([r for r in results if r.get('compliance_status') != 'COMPLIANT']),
            'compliance_percentage': 0,
            'framework_summary': {},
            'details': results
        }
        
        if report['total_resources'] > 0:
            report['compliance_percentage'] = (report['compliant_resources'] / report['total_resources']) * 100
        
        # Generate framework-specific summaries
        for result in results:
            framework = result.get('framework', 'Unknown')
            if framework not in report['framework_summary']:
                report['framework_summary'][framework] = {
                    'total': 0,
                    'compliant': 0,
                    'non_compliant': 0
                }
            
            report['framework_summary'][framework]['total'] += 1
            
            if result.get('compliance_status') == 'COMPLIANT':
                report['framework_summary'][framework]['compliant'] += 1
            else:
                report['framework_summary'][framework]['non_compliant'] += 1
        
        return report

# Example usage
async def main():
    engine = ContinuousComplianceEngine()
    
    # Run compliance monitoring every hour
    while True:
        report = await engine.run_compliance_monitoring_cycle()
        
        # Log summary
        print(f"Compliance Report: {report['compliance_percentage']:.2f}% compliant")
        
        # Wait for next cycle
        await asyncio.sleep(3600)  # 1 hour

if __name__ == '__main__':
    asyncio.run(main())

Compliance Dashboard and Reporting

BASH
#!/bin/bash
# Example: Compliance reporting automation
COMPLIANCE_REPORT_DIR="/var/reports/compliance"
ARCHIVE_DIR="/var/archive/compliance"

# Function to generate compliance report
generate_compliance_report() {
    local report_date=$(date +%Y%m%d)
    local report_file="$COMPLIANCE_REPORT_DIR/compliance-report-$report_date.json"
    
    echo "Generating compliance report for $report_date..."
    
    # Collect compliance data from various sources
    cat << EOF > $report_file
{
  "report_date": "$report_date",
  "report_timestamp": "$(date -u +%Y-%m-%dT%H:%M:%SZ)",
  "summary": {
    "total_resources": $(get_total_resources),
    "compliant_resources": $(get_compliant_resources),
    "non_compliant_resources": $(get_non_compliant_resources),
    "compliance_percentage": $(calculate_compliance_percentage)
  },
  "frameworks": {
    "SOX": $(get_framework_compliance SOX),
    "HIPAA": $(get_framework_compliance HIPAA),
    "PCI-DSS": $(get_framework_compliance PCIDSS),
    "GDPR": $(get_framework_compliance GDPR)
  },
  "recent_violations": [
    $(get_recent_violations)
  ],
  "trends": {
    "last_7_days": [
      $(get_weekly_trend)
    ]
  }
}
EOF
    
    # Archive previous reports
    archive_old_reports
    
    echo "Compliance report generated: $report_file"
}

# Function to get total resources
get_total_resources() {
    # Query compliance database
    mysql -u $DB_USER -p$DB_PASS -D $COMPLIANCE_DB -sN -e "SELECT COUNT(*) FROM resources;"
}

# Function to get compliant resources
get_compliant_resources() {
    mysql -u $DB_USER -p$DB_PASS -D $COMPLIANCE_DB -sN -e "SELECT COUNT(*) FROM resources WHERE compliance_status = 'COMPLIANT';"
}

# Function to get non-compliant resources
get_non_compliant_resources() {
    mysql -u $DB_USER -p$DB_PASS -D $COMPLIANCE_DB -sN -e "SELECT COUNT(*) FROM resources WHERE compliance_status != 'COMPLIANT';"
}

# Function to calculate compliance percentage
calculate_compliance_percentage() {
    local total=$(get_total_resources)
    local compliant=$(get_compliant_resources)
    
    if [ $total -eq 0 ]; then
        echo "0"
    else
        echo "scale=2; $compliant * 100 / $total" | bc
    fi
}

# Function to get framework compliance
get_framework_compliance() {
    local framework=$1
    local total=$(mysql -u $DB_USER -p$DB_PASS -D $COMPLIANCE_DB -sN -e "SELECT COUNT(*) FROM compliance_checks WHERE framework = '$framework';")
    local compliant=$(mysql -u $DB_USER -p$DB_PASS -D $COMPLIANCE_DB -sN -e "SELECT COUNT(*) FROM compliance_checks WHERE framework = '$framework' AND status = 'COMPLIANT';")
    
    cat << EOF
{
  "total": $total,
  "compliant": $compliant,
  "percentage": $(if [ $total -eq 0 ]; then echo "0"; else echo "scale=2; $compliant * 100 / $total" | bc; fi)
}
EOF
}

# Function to get recent violations
get_recent_violations() {
    mysql -u $DB_USER -p$DB_PASS -D $COMPLIANCE_DB -sN -e "
    SELECT CONCAT('{\"resource\":\"', resource_id, '\",\"violation\":\"', violation_description, '\",\"timestamp\":\"', timestamp, '\"}') 
    FROM compliance_violations 
    WHERE timestamp >= DATE_SUB(NOW(), INTERVAL 24 HOUR) 
    ORDER BY timestamp DESC 
    LIMIT 10;" | tr '\n' ',' | sed 's/,$//'
}

# Function to archive old reports
archive_old_reports() {
    local archive_date=$(date -d '7 days ago' +%Y%m%d)
    mkdir -p $ARCHIVE_DIR
    
    # Move reports older than 7 days to archive
    find $COMPLIANCE_REPORT_DIR -name "compliance-report-*.json" -mtime +7 -exec mv {} $ARCHIVE_DIR/ \;
}

# Function to send compliance alerts
send_compliance_alerts() {
    local compliance_percentage=$(calculate_compliance_percentage)
    local threshold=95  # 95% compliance threshold
    
    if (( $(echo "$compliance_percentage < $threshold" | bc -l) )); then
        # Send alert to compliance team
        echo "Compliance Alert: Current compliance is ${compliance_percentage}% (threshold: ${threshold}%)"
        
        # Send email notification
        send_mail -s "Compliance Alert: Low Compliance Percentage" -t [email protected] << EOF
Compliance Alert:

Current compliance percentage: $compliance_percentage%
Threshold: $threshold%

Please investigate and take corrective action.

Report: $COMPLIANCE_REPORT_DIR/compliance-report-$(date +%Y%m%d).json
EOF
    fi
}

# Main execution
if [ ! -d "$COMPLIANCE_REPORT_DIR" ]; then
    mkdir -p $COMPLIANCE_REPORT_DIR
fi

# Generate report
generate_compliance_report

# Send alerts if needed
send_compliance_alerts

# Update dashboard
update_compliance_dashboard

echo "Compliance reporting completed"

Compliance Evidence Management

Automated Evidence Collection

PYTHON
# Example: Automated compliance evidence collector
import os
import hashlib
import json
from datetime import datetime
from typing import Dict, List, Any
import boto3
import paramiko
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
from cryptography.hazmat.primitives.serialization import load_pem_private_key

class ComplianceEvidenceCollector:
    def __init__(self, config_file: str):
        self.config = self.load_config(config_file)
        self.evidence_store = self.initialize_evidence_store()
        self.signing_key = self.load_signing_key()
        
    def load_config(self, config_file: str) -> Dict[str, Any]:
        """
        Load compliance evidence collection configuration
        """
        with open(config_file, 'r') as f:
            return json.load(f)
    
    def initialize_evidence_store(self):
        """
        Initialize evidence storage (could be S3, database, etc.)
        """
        # Example: Initialize S3 evidence store
        s3_client = boto3.client('s3')
        return s3_client
    
    def load_signing_key(self):
        """
        Load private key for evidence signing
        """
        with open(self.config['signing_key_path'], 'rb') as key_file:
            pem_data = key_file.read()
            return load_pem_private_key(pem_data, password=None)
    
    def collect_aws_evidence(self, resource_ids: List[str]) -> List[Dict[str, Any]]:
        """
        Collect evidence for AWS resources
        """
        evidence_collection = []
        
        ec2_client = boto3.client('ec2')
        iam_client = boto3.client('iam')
        s3_client = boto3.client('s3')
        
        for resource_id in resource_ids:
            if resource_id.startswith('i-'):  # EC2 Instance
                instance_data = ec2_client.describe_instances(InstanceIds=[resource_id])
                
                evidence = {
                    'resource_id': resource_id,
                    'resource_type': 'EC2_Instance',
                    'collection_timestamp': datetime.utcnow().isoformat(),
                    'data': instance_data['Reservations'][0]['Instances'][0],
                    'checksum': self.calculate_checksum(instance_data)
                }
                
                evidence_collection.append(evidence)
            
            elif resource_id.startswith('arn:aws:iam'):  # IAM Resource
                # Extract resource type and name from ARN
                arn_parts = resource_id.split(':')
                resource_type = arn_parts[5].split('/')[0]
                resource_name = arn_parts[5].split('/')[-1]
                
                if resource_type == 'role':
                    role_data = iam_client.get_role(RoleName=resource_name)
                    evidence = {
                        'resource_id': resource_id,
                        'resource_type': 'IAM_Role',
                        'collection_timestamp': datetime.utcnow().isoformat(),
                        'data': role_data['Role'],
                        'checksum': self.calculate_checksum(role_data)
                    }
                    evidence_collection.append(evidence)
        
        return evidence_collection
    
    def collect_application_evidence(self, app_endpoints: List[str]) -> List[Dict[str, Any]]:
        """
        Collect evidence from application endpoints
        """
        evidence_collection = []
        
        for endpoint in app_endpoints:
            # Collect application security evidence
            app_evidence = self.get_app_security_config(endpoint)
            
            evidence = {
                'endpoint': endpoint,
                'resource_type': 'Application',
                'collection_timestamp': datetime.utcnow().isoformat(),
                'data': app_evidence,
                'checksum': self.calculate_checksum(app_evidence)
            }
            
            evidence_collection.append(evidence)
        
        return evidence_collection
    
    def get_app_security_config(self, endpoint: str) -> Dict[str, Any]:
        """
        Get application security configuration
        """
        import requests
        
        # Get security headers
        response = requests.get(endpoint)
        security_headers = {}
        
        for header in ['X-Frame-Options', 'X-XSS-Protection', 'X-Content-Type-Options', 
                       'Strict-Transport-Security', 'Content-Security-Policy']:
            if header in response.headers:
                security_headers[header] = response.headers[header]
        
        # Get SSL certificate information
        import ssl
        import socket
        
        hostname = endpoint.replace('https://', '').split('/')[0]
        context = ssl.create_default_context()
        
        try:
            with socket.create_connection((hostname, 443)) as sock:
                with context.wrap_socket(sock, server_hostname=hostname) as ssock:
                    cert = ssock.getpeercert()
                    ssl_info = {
                        'subject': dict(x[0] for x in cert['subject']),
                        'issuer': dict(x[0] for x in cert['issuer']),
                        'version': cert['version'],
                        'serial_number': cert['serialNumber'],
                        'not_before': cert['notBefore'],
                        'not_after': cert['notAfter']
                    }
        except Exception as e:
            ssl_info = {'error': str(e)}
        
        return {
            'security_headers': security_headers,
            'ssl_certificate': ssl_info,
            'server_signature': response.headers.get('Server', 'Unknown')
        }
    
    def collect_network_evidence(self, network_configs: List[Dict[str, str]]) -> List[Dict[str, Any]]:
        """
        Collect network security evidence
        """
        evidence_collection = []
        
        for net_config in network_configs:
            # Connect to network device and collect configuration
            ssh_client = paramiko.SSHClient()
            ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
            
            try:
                ssh_client.connect(
                    hostname=net_config['host'],
                    username=net_config['username'],
                    password=net_config['password']
                )
                
                # Execute commands to get security configuration
                stdin, stdout, stderr = ssh_client.exec_command('show running-config | include security')
                security_config = stdout.read().decode()
                
                evidence = {
                    'device_id': net_config['host'],
                    'resource_type': 'Network_Device',
                    'collection_timestamp': datetime.utcnow().isoformat(),
                    'data': {
                        'security_config': security_config,
                        'device_model': net_config['model'],
                        'firmware_version': net_config.get('firmware_version', 'unknown')
                    },
                    'checksum': self.calculate_checksum(security_config)
                }
                
                evidence_collection.append(evidence)
                
            finally:
                ssh_client.close()
        
        return evidence_collection
    
    def calculate_checksum(self, data: Any) -> str:
        """
        Calculate checksum for evidence data
        """
        data_str = json.dumps(data, sort_keys=True, default=str)
        return hashlib.sha256(data_str.encode()).hexdigest()
    
    def sign_evidence(self, evidence: Dict[str, Any]) -> Dict[str, Any]:
        """
        Sign evidence with private key
        """
        evidence_copy = evidence.copy()
        data_to_sign = json.dumps(evidence_copy, sort_keys=True, default=str)
        
        signature = self.signing_key.sign(
            data_to_sign.encode(),
            padding.PKCS1v15(),
            hashes.SHA256()
        )
        
        evidence_copy['signature'] = signature.hex()
        return evidence_copy
    
    def store_evidence(self, evidence: List[Dict[str, Any]], framework: str) -> str:
        """
        Store evidence in compliance repository
        """
        # Create evidence package
        evidence_package = {
            'framework': framework,
            'collection_timestamp': datetime.utcnow().isoformat(),
            'evidence_count': len(evidence),
            'evidence_items': [self.sign_evidence(item) for item in evidence],
            'package_checksum': self.calculate_checksum(evidence)
        }
        
        # Store in S3
        s3_key = f"compliance-evidence/{framework}/{datetime.utcnow().strftime('%Y/%m/%d')}/evidence-{datetime.utcnow().strftime('%H%M%S')}.json"
        
        self.evidence_store.put_object(
            Bucket=self.config['evidence_bucket'],
            Key=s3_key,
            Body=json.dumps(evidence_package, indent=2),
            ServerSideEncryption='AES256'
        )
        
        return s3_key
    
    def collect_and_store_evidence(self, framework: str) -> str:
        """
        Collect and store evidence for a compliance framework
        """
        # Define evidence collection based on framework
        if framework == 'SOX':
            # SOX-specific evidence collection
            aws_resources = self.config.get('sox_aws_resources', [])
            app_endpoints = self.config.get('sox_app_endpoints', [])
            
            evidence = []
            evidence.extend(self.collect_aws_evidence(aws_resources))
            evidence.extend(self.collect_application_evidence(app_endpoints))
            
        elif framework == 'HIPAA':
            # HIPAA-specific evidence collection
            aws_resources = self.config.get('hipaa_aws_resources', [])
            network_configs = self.config.get('hipaa_network_configs', [])
            
            evidence = []
            evidence.extend(self.collect_aws_evidence(aws_resources))
            evidence.extend(self.collect_network_evidence(network_configs))
            
        elif framework == 'PCI-DSS':
            # PCI-DSS-specific evidence collection
            aws_resources = self.config.get('pcidss_aws_resources', [])
            app_endpoints = self.config.get('pcidss_app_endpoints', [])
            
            evidence = []
            evidence.extend(self.collect_aws_evidence(aws_resources))
            evidence.extend(self.collect_application_evidence(app_endpoints))
        
        # Store collected evidence
        s3_key = self.store_evidence(evidence, framework)
        
        print(f"Collected and stored {len(evidence)} evidence items for {framework} at {s3_key}")
        return s3_key

# Example usage
collector = ComplianceEvidenceCollector('compliance-config.json')

# Collect evidence for different frameworks
sox_evidence = collector.collect_and_store_evidence('SOX')
hipaa_evidence = collector.collect_and_store_evidence('HIPAA')
pcidss_evidence = collector.collect_and_store_evidence('PCI-DSS')

Governance Framework Implementation

Risk Management Integration

Risk Assessment Automation

PYTHON
# Example: Automated risk assessment for compliance
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import numpy as np
from datetime import datetime, timedelta

class AutomatedRiskAssessment:
    def __init__(self):
        self.risk_model = self.train_risk_model()
        self.threat_intelligence = self.load_threat_intelligence()
        self.compliance_mapping = self.load_compliance_mappings()
        
    def train_risk_model(self):
        """
        Train risk assessment model using historical data
        """
        # Load historical risk data
        risk_data = pd.read_csv('historical-risk-data.csv')
        
        # Features for risk assessment
        features = [
            'vulnerability_severity', 'patch_age', 'access_level', 
            'data_classification', 'network_segment', 'threat_level',
            'compliance_gap', 'control_effectiveness'
        ]
        
        X = risk_data[features]
        y = risk_data['risk_score']  # Target variable
        
        # Split data and train model
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
        
        model = RandomForestClassifier(n_estimators=100, random_state=42)
        model.fit(X_train, y_train)
        
        return model
    
    def load_threat_intelligence(self):
        """
        Load current threat intelligence data
        """
        # This would typically come from threat intelligence feeds
        return {
            'active_threats': [
                {'id': 'CVE-2023-XXXX', 'severity': 'HIGH', 'affects': ['web_servers']},
                {'id': 'CVE-2023-YYYY', 'severity': 'CRITICAL', 'affects': ['databases']}
            ],
            'geographic_threats': {
                'us-east-1': ['DDoS', 'Phishing'],
                'eu-west-1': ['APT', 'Ransomware']
            }
        }
    
    def load_compliance_mappings(self):
        """
        Load compliance requirement mappings
        """
        return {
            'SOX': {
                'access_control': ['IAM', 'Authentication'],
                'change_management': ['CI/CD', 'Deployment'],
                'audit_logging': ['Logging', 'Monitoring']
            },
            'HIPAA': {
                'data_encryption': ['Storage', 'Transmission'],
                'access_logs': ['Authentication', 'Authorization'],
                'incident_response': ['Monitoring', 'Alerting']
            },
            'PCI-DSS': {
                'network_security': ['Firewalls', 'Segmentation'],
                'data_protection': ['Encryption', 'Tokenization'],
                'vulnerability_mgmt': ['Scanning', 'Patching']
            }
        }
    
    def assess_resource_risk(self, resource_config: Dict[str, Any]) -> Dict[str, Any]:
        """
        Assess risk for a specific resource
        """
        # Extract features from resource configuration
        features = self.extract_features(resource_config)
        
        # Predict risk score using trained model
        risk_score = self.risk_model.predict_proba([features])[0][1]  # Probability of high risk
        
        # Determine risk level
        if risk_score >= 0.8:
            risk_level = 'CRITICAL'
        elif risk_score >= 0.6:
            risk_level = 'HIGH'
        elif risk_score >= 0.4:
            risk_level = 'MEDIUM'
        else:
            risk_level = 'LOW'
        
        # Identify affected compliance frameworks
        affected_frameworks = self.identify_affected_compliance(resource_config, risk_level)
        
        # Generate mitigation recommendations
        recommendations = self.generate_recommendations(resource_config, risk_level)
        
        risk_assessment = {
            'resource_id': resource_config['id'],
            'risk_score': float(risk_score),
            'risk_level': risk_level,
            'affected_frameworks': affected_frameworks,
            'recommendations': recommendations,
            'assessment_timestamp': datetime.utcnow().isoformat(),
            'confidence': float(np.max(self.risk_model.predict_proba([features])[0]))
        }
        
        return risk_assessment
    
    def extract_features(self, resource_config: Dict[str, Any]) -> List[float]:
        """
        Extract features for risk assessment model
        """
        # Example feature extraction (would be more complex in practice)
        features = [
            resource_config.get('vulnerability_severity', 0) / 10.0,  # Normalize to 0-1
            resource_config.get('patch_age_days', 0) / 365.0,  # Days normalized to years
            resource_config.get('access_level', 1) / 5.0,  # Assuming 1-5 scale
            resource_config.get('data_classification', 1) / 5.0,  # Assuming 1-5 scale
            resource_config.get('network_segment_risk', 1) / 5.0,  # Assuming 1-5 scale
            resource_config.get('threat_level', 1) / 5.0,  # Assuming 1-5 scale
            resource_config.get('compliance_gap_score', 1) / 5.0,  # Assuming 1-5 scale
            resource_config.get('control_effectiveness', 1) / 5.0  # Assuming 1-5 scale
        ]
        
        return features
    
    def identify_affected_compliance(self, resource_config: Dict[str, Any], risk_level: str) -> List[str]:
        """
        Identify which compliance frameworks are affected by the risk
        """
        affected_frameworks = []
        
        # Check if resource type affects specific compliance frameworks
        resource_type = resource_config.get('type', '').lower()
        data_classification = resource_config.get('data_classification', '').upper()
        
        # SOX compliance (financial data)
        if resource_type in ['database', 'application'] and data_classification in ['FINANCIAL', 'REGULATORY']:
            affected_frameworks.append('SOX')
        
        # HIPAA compliance (health data)
        if resource_type in ['database', 'application'] and data_classification in ['PHI', 'HEALTH']:
            affected_frameworks.append('HIPAA')
        
        # PCI-DSS compliance (payment data)
        if resource_type in ['payment_gateway', 'card_processing'] and data_classification in ['PCI', 'PAYMENT']:
            affected_frameworks.append('PCI-DSS')
        
        return affected_frameworks
    
    def generate_recommendations(self, resource_config: Dict[str, Any], risk_level: str) -> List[str]:
        """
        Generate risk mitigation recommendations
        """
        recommendations = []
        
        if risk_level in ['HIGH', 'CRITICAL']:
            # Add specific recommendations based on resource type and configuration
            if resource_config.get('public_access', False):
                recommendations.append("Restrict public access to resource")
            
            if not resource_config.get('encryption_enabled', False):
                recommendations.append("Enable encryption for data at rest and in transit")
            
            if resource_config.get('authentication_required', True) and not resource_config.get('multi_factor_auth', False):
                recommendations.append("Implement multi-factor authentication")
            
            if resource_config.get('logging_enabled', False) == False:
                recommendations.append("Enable comprehensive logging and monitoring")
        
        return recommendations
    
    def run_comprehensive_risk_assessment(self, resources: List[Dict[str, Any]]) -> Dict[str, Any]:
        """
        Run comprehensive risk assessment for multiple resources
        """
        assessments = []
        
        for resource in resources:
            assessment = self.assess_resource_risk(resource)
            assessments.append(assessment)
        
        # Generate overall risk report
        total_resources = len(assessments)
        critical_risks = len([a for a in assessments if a['risk_level'] == 'CRITICAL'])
        high_risks = len([a for a in assessments if a['risk_level'] == 'HIGH'])
        
        report = {
            'report_timestamp': datetime.utcnow().isoformat(),
            'total_resources_assessed': total_resources,
            'critical_risks': critical_risks,
            'high_risks': high_risks,
            'medium_risks': len([a for a in assessments if a['risk_level'] == 'MEDIUM']),
            'low_risks': len([a for a in assessments if a['risk_level'] == 'LOW']),
            'risk_distribution': {
                'critical': critical_risks / total_resources if total_resources > 0 else 0,
                'high': high_risks / total_resources if total_resources > 0 else 0
            },
            'individual_assessments': assessments,
            'top_recommendations': self.get_top_recommendations(assessments)
        }
        
        return report
    
    def get_top_recommendations(self, assessments: List[Dict[str, Any]]) -> List[str]:
        """
        Get top recommendations from all assessments
        """
        all_recommendations = []
        for assessment in assessments:
            if assessment['risk_level'] in ['HIGH', 'CRITICAL']:
                all_recommendations.extend(assessment['recommendations'])
        
        # Count frequency of recommendations
        from collections import Counter
        recommendation_counts = Counter(all_recommendations)
        
        # Return top 5 recommendations
        return [rec for rec, count in recommendation_counts.most_common(5)]

# Example usage
risk_assessor = AutomatedRiskAssessment()

# Sample resources to assess
sample_resources = [
    {
        'id': 'db-production-001',
        'type': 'database',
        'vulnerability_severity': 8.5,
        'patch_age_days': 120,
        'access_level': 4,
        'data_classification': 'FINANCIAL',
        'network_segment_risk': 2,
        'threat_level': 3,
        'compliance_gap_score': 2,
        'control_effectiveness': 3,
        'public_access': False,
        'encryption_enabled': True,
        'multi_factor_auth': False,
        'logging_enabled': True
    },
    {
        'id': 'api-public-001',
        'type': 'application',
        'vulnerability_severity': 7.2,
        'patch_age_days': 45,
        'access_level': 5,
        'data_classification': 'PHI',
        'network_segment_risk': 4,
        'threat_level': 4,
        'compliance_gap_score': 3,
        'control_effectiveness': 2,
        'public_access': True,
        'encryption_enabled': False,
        'multi_factor_auth': False,
        'logging_enabled': False
    }
]

# Run risk assessment
risk_report = risk_assessor.run_comprehensive_risk_assessment(sample_resources)
print(json.dumps(risk_report, indent=2))

Change Management for Compliance

Automated Change Approval Workflow

YAML
# Example: Automated change approval workflow for compliance
name: Compliant Change Management
on:
  pull_request:
    types: [opened, synchronize, reopened]

jobs:
  compliance-check:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
        with:
          fetch-depth: 0
      
      # Check if change affects compliance-critical components
      - name: Identify compliance impact
        id: compliance-check
        run: |
          # Check if changed files are in compliance-critical directories
          COMPLIANCE_FILES_CHANGED=$(git diff --name-only HEAD^ HEAD | grep -E "(config|security|compliance|infrastructure)" | wc -l)
          
          if [ $COMPLIANCE_FILES_CHANGED -gt 0 ]; then
            echo "COMPLIANCE_IMPACT=true" >> $GITHUB_OUTPUT
            echo "Change affects compliance-critical components"
            
            # Get list of affected files
            AFFECTED_FILES=$(git diff --name-only HEAD^ HEAD | grep -E "(config|security|compliance|infrastructure)")
            echo "Affected files: $AFFECTED_FILES"
            
            # Determine if additional approvals are needed
            if echo "$AFFECTED_FILES" | grep -q "pci"; then
              echo "PCI-DSS_APPROVAL_NEEDED=true" >> $GITHUB_OUTPUT
            fi
            
            if echo "$AFFECTED_FILES" | grep -q "hipaa"; then
              echo "HIPAA_APPROVAL_NEEDED=true" >> $GITHUB_OUTPUT
            fi
          else
            echo "COMPLIANCE_IMPACT=false" >> $GITHUB_OUTPUT
          fi
      
      # Run compliance validation if needed
      - name: Run compliance validation
        if: steps.compliance-check.outputs.COMPLIANCE_IMPACT == 'true'
        run: |
          # Run compliance validation scripts
          ./scripts/validate-compliance.sh
      
      # Security scanning for compliance changes
      - name: Security scan for compliance changes
        if: steps.compliance-check.outputs.COMPLIANCE_IMPACT == 'true'
        run: |
          # Run enhanced security scanning
          ./scripts/enhanced-security-scan.sh
      
      # Check for required approvals
      - name: Check required approvals
        if: steps.compliance-check.outputs.COMPLIANCE_IMPACT == 'true'
        run: |
          # Check if required approvals are present
          APPROVALS_NEEDED=1
          
          if [ "${{ steps.compliance-check.outputs.PCI_DSS_APPROVAL_NEEDED }}" = "true" ]; then
            APPROVALS_NEEDED=$((APPROVALS_NEEDED + 1))
            echo "PCI-DSS changes require additional approval"
          fi
          
          if [ "${{ steps.compliance-check.outputs.HIPAA_APPROVAL_NEEDED }}" = "true" ]; then
            APPROVALS_NEEDED=$((APPROVALS_NEEDED + 1))
            echo "HIPAA changes require additional approval"
          fi
          
          # Count actual approvals
          ACTUAL_APPROVALS=$(curl -s -H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
            "https://api.github.com/repos/${{ github.repository }}/pulls/${{ github.event.pull_request.number }}/reviews" \
            | jq -r '.[] | select(.state == "APPROVED") | .user.login' | wc -l)
          
          if [ $ACTUAL_APPROVALS -lt $APPROVALS_NEEDED ]; then
            echo "Insufficient approvals. Required: $APPROVALS_NEEDED, Actual: $ACTUAL_APPROVALS"
            exit 1
          fi

  automated-testing:
    needs: compliance-check
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
      
      # Run compliance-specific tests
      - name: Run compliance tests
        run: |
          pytest tests/compliance/ -v
          
      # Run integration tests for compliance features
      - name: Run compliance integration tests
        run: |
          pytest tests/integration/test_compliance.py -v

  approval-gate:
    needs: [compliance-check, automated-testing]
    runs-on: ubuntu-latest
    steps:
      - name: Final compliance check
        run: |
          # Final check before merge
          echo "All compliance checks passed"
          echo "Ready for merge with compliance approval"

Audit Trail Management

Automated Audit Trail Collection

PYTHON
# Example: Automated audit trail management
import sqlite3
import json
from datetime import datetime
from typing import Dict, List, Any
import hashlib
import hmac

class AuditTrailManager:
    def __init__(self, db_path: str = 'audit_trail.db'):
        self.db_path = db_path
        self.init_database()
        self.secret_key = self.load_secret_key()
    
    def init_database(self):
        """
        Initialize audit trail database
        """
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        # Create audit trail table
        cursor.execute('''
            CREATE TABLE IF NOT EXISTS audit_events (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                event_id TEXT UNIQUE NOT NULL,
                timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
                user_id TEXT NOT NULL,
                action TEXT NOT NULL,
                resource_type TEXT NOT NULL,
                resource_id TEXT NOT NULL,
                old_values TEXT,
                new_values TEXT,
                ip_address TEXT,
                user_agent TEXT,
                session_id TEXT,
                compliance_framework TEXT,
                signature TEXT NOT NULL
            )
        ''')
        
        # Create indexes for performance
        cursor.execute('CREATE INDEX IF NOT EXISTS idx_timestamp ON audit_events(timestamp)')
        cursor.execute('CREATE INDEX IF NOT EXISTS idx_user_id ON audit_events(user_id)')
        cursor.execute('CREATE INDEX IF NOT EXISTS idx_resource_id ON audit_events(resource_id)')
        cursor.execute('CREATE INDEX IF NOT EXISTS idx_compliance_framework ON audit_events(compliance_framework)')
        
        conn.commit()
        conn.close()
    
    def load_secret_key(self) -> bytes:
        """
        Load secret key for audit event signing
        """
        # In practice, this would come from a secure configuration
        return b'audit_trail_signing_key'  # This should be loaded securely
    
    def calculate_signature(self, event_data: Dict[str, Any]) -> str:
        """
        Calculate HMAC signature for audit event
        """
        # Create canonical representation of event data
        canonical_data = json.dumps(event_data, sort_keys=True, default=str)
        
        # Calculate HMAC signature
        signature = hmac.new(
            self.secret_key,
            canonical_data.encode(),
            hashlib.sha256
        ).hexdigest()
        
        return signature
    
    def log_audit_event(self, event: Dict[str, Any]) -> str:
        """
        Log an audit event to the trail
        """
        # Generate unique event ID
        event_id = f"audit_{datetime.utcnow().strftime('%Y%m%d_%H%M%S')}_{hashlib.md5(str(event).encode()).hexdigest()[:8]}"
        
        # Calculate signature for the event
        signature = self.calculate_signature({
            'event_id': event_id,
            **event
        })
        
        # Prepare event for storage
        audit_event = {
            'event_id': event_id,
            'user_id': event['user_id'],
            'action': event['action'],
            'resource_type': event['resource_type'],
            'resource_id': event['resource_id'],
            'old_values': json.dumps(event.get('old_values', {})),
            'new_values': json.dumps(event.get('new_values', {})),
            'ip_address': event.get('ip_address', ''),
            'user_agent': event.get('user_agent', ''),
            'session_id': event.get('session_id', ''),
            'compliance_framework': event.get('compliance_framework', ''),
            'signature': signature
        }
        
        # Insert into database
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute('''
            INSERT INTO audit_events 
            (event_id, user_id, action, resource_type, resource_id, old_values, new_values, 
             ip_address, user_agent, session_id, compliance_framework, signature)
            VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
        ''', tuple(audit_event.values()))
        
        conn.commit()
        conn.close()
        
        return event_id
    
    def get_audit_events(self, filters: Dict[str, Any] = None) -> List[Dict[str, Any]]:
        """
        Retrieve audit events with optional filtering
        """
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        query = "SELECT * FROM audit_events WHERE 1=1"
        params = []
        
        if filters:
            if 'user_id' in filters:
                query += " AND user_id = ?"
                params.append(filters['user_id'])
            
            if 'resource_id' in filters:
                query += " AND resource_id = ?"
                params.append(filters['resource_id'])
            
            if 'action' in filters:
                query += " AND action = ?"
                params.append(filters['action'])
            
            if 'compliance_framework' in filters:
                query += " AND compliance_framework = ?"
                params.append(filters['compliance_framework'])
            
            if 'start_date' in filters:
                query += " AND timestamp >= ?"
                params.append(filters['start_date'])
            
            if 'end_date' in filters:
                query += " AND timestamp <= ?"
                params.append(filters['end_date'])
        
        query += " ORDER BY timestamp DESC"
        
        cursor.execute(query, params)
        rows = cursor.fetchall()
        
        # Get column names
        columns = [description[0] for description in cursor.description]
        
        # Convert rows to dictionaries
        events = []
        for row in rows:
            event_dict = dict(zip(columns, row))
            
            # Parse JSON fields
            event_dict['old_values'] = json.loads(event_dict['old_values'])
            event_dict['new_values'] = json.loads(event_dict['new_values'])
            
            events.append(event_dict)
        
        conn.close()
        return events
    
    def verify_audit_integrity(self, event_id: str) -> bool:
        """
        Verify the integrity of a specific audit event
        """
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute("SELECT * FROM audit_events WHERE event_id = ?", (event_id,))
        row = cursor.fetchone()
        
        if not row:
            conn.close()
            return False
        
        # Get column names
        columns = [description[0] for description in cursor.description]
        event = dict(zip(columns, row))
        
        conn.close()
        
        # Recreate the data that was signed
        original_data = {
            'event_id': event['event_id'],
            'user_id': event['user_id'],
            'action': event['action'],
            'resource_type': event['resource_type'],
            'resource_id': event['resource_id'],
            'old_values': event['old_values'],
            'new_values': event['new_values'],
            'ip_address': event['ip_address'],
            'user_agent': event['user_agent'],
            'session_id': event['session_id'],
            'compliance_framework': event['compliance_framework']
        }
        
        # Calculate signature for verification
        calculated_signature = self.calculate_signature(original_data)
        
        return hmac.compare_digest(calculated_signature, event['signature'])
    
    def generate_audit_report(self, start_date: str, end_date: str, compliance_framework: str = None) -> Dict[str, Any]:
        """
        Generate comprehensive audit report
        """
        filters = {
            'start_date': start_date,
            'end_date': end_date
        }
        
        if compliance_framework:
            filters['compliance_framework'] = compliance_framework
        
        events = self.get_audit_events(filters)
        
        # Generate report statistics
        report = {
            'report_metadata': {
                'generated_at': datetime.utcnow().isoformat(),
                'period_start': start_date,
                'period_end': end_date,
                'compliance_framework': compliance_framework
            },
            'summary': {
                'total_events': len(events),
                'unique_users': len(set(event['user_id'] for event in events)),
                'unique_resources': len(set(f"{event['resource_type']}:{event['resource_id']}" for event in events)),
                'actions_by_type': {}
            },
            'events': events,
            'compliance_verification': {
                'integrity_check_passed': all(self.verify_audit_integrity(event['event_id']) for event in events)
            }
        }
        
        # Count actions by type
        for event in events:
            action = event['action']
            report['summary']['actions_by_type'][action] = report['summary']['actions_by_type'].get(action, 0) + 1
        
        return report

# Example usage
audit_manager = AuditTrailManager()

# Log some sample audit events
event1_id = audit_manager.log_audit_event({
    'user_id': 'user123',
    'action': 'UPDATE',
    'resource_type': 'Database',
    'resource_id': 'db-prod-001',
    'old_values': {'encryption': False},
    'new_values': {'encryption': True},
    'ip_address': '192.168.1.100',
    'user_agent': 'Mozilla/5.0...',
    'session_id': 'sess_abc123',
    'compliance_framework': 'SOX'
})

event2_id = audit_manager.log_audit_event({
    'user_id': 'admin456',
    'action': 'DELETE',
    'resource_type': 'PatientRecord',
    'resource_id': 'pat_rec_789',
    'old_values': {'status': 'active'},
    'new_values': {'status': 'deleted'},
    'ip_address': '192.168.1.101',
    'user_agent': 'Mozilla/5.0...',
    'session_id': 'sess_def456',
    'compliance_framework': 'HIPAA'
})

# Generate audit report
report = audit_manager.generate_audit_report(
    start_date='2023-01-01',
    end_date='2023-12-31',
    compliance_framework='SOX'
)

print(json.dumps(report, indent=2))

Compliance Reporting and Documentation

Automated Compliance Reporting

Compliance Dashboard Implementation

PYTHON
# Example: Compliance dashboard backend
from flask import Flask, jsonify, request
import plotly.graph_objects as go
import plotly.express as px
from plotly.utils import PlotlyJSONEncoder
import json
from datetime import datetime, timedelta
import calendar

app = Flask(__name__)

class ComplianceDashboard:
    def __init__(self):
        self.data_source = self.initialize_data_source()
    
    def initialize_data_source(self):
        """
        Initialize connection to compliance data sources
        """
        # This would connect to your compliance databases/data warehouses
        return {
            'compliance_db': self.connect_to_compliance_db(),
            'security_scans': self.connect_to_security_scans(),
            'audit_logs': self.connect_to_audit_logs()
        }
    
    def connect_to_compliance_db(self):
        """
        Connect to compliance database
        """
        # Placeholder for actual database connection
        return MockComplianceDB()
    
    def connect_to_security_scans(self):
        """
        Connect to security scan results
        """
        return MockSecurityScans()
    
    def connect_to_audit_logs(self):
        """
        Connect to audit logs
        """
        return MockAuditLogs()
    
    def get_compliance_summary(self) -> Dict[str, Any]:
        """
        Get overall compliance summary
        """
        # Get compliance data
        compliance_data = self.data_source['compliance_db'].get_current_compliance()
        
        summary = {
            'overall_compliance': compliance_data['overall_compliance'],
            'frameworks': compliance_data['frameworks'],
            'trending': compliance_data['trending'],
            'recent_violations': compliance_data['recent_violations'][:5],
            'upcoming_audits': compliance_data['upcoming_audits']
        }
        
        return summary
    
    def get_compliance_trend_chart(self, days: int = 90) -> str:
        """
        Generate compliance trend chart
        """
        # Get historical compliance data
        historical_data = self.data_source['compliance_db'].get_historical_compliance(days)
        
        # Create trend chart
        fig = go.Figure()
        
        for framework, data in historical_data.items():
            fig.add_trace(go.Scatter(
                x=[datetime.fromisoformat(d['date']) for d in data],
                y=[d['compliance_percentage'] for d in data],
                mode='lines+markers',
                name=framework,
                hovertemplate='%{y:.2f}%<extra></extra>'
            ))
        
        fig.update_layout(
            title='Compliance Trend Over Time',
            xaxis_title='Date',
            yaxis_title='Compliance Percentage',
            height=400
        )
        
        return json.dumps(fig, cls=PlotlyJSONEncoder)
    
    def get_violation_analysis_chart(self) -> str:
        """
        Generate violation analysis chart
        """
        violations = self.data_source['compliance_db'].get_violation_analysis()
        
        fig = px.bar(
            x=list(violations.keys()),
            y=list(violations.values()),
            labels={'x': 'Violation Type', 'y': 'Count'},
            title='Compliance Violations by Type'
        )
        
        fig.update_layout(height=400)
        
        return json.dumps(fig, cls=PlotlyJSONEncoder)
    
    def get_resource_compliance_chart(self) -> str:
        """
        Generate resource compliance chart
        """
        resource_compliance = self.data_source['compliance_db'].get_resource_compliance()
        
        fig = go.Figure(data=[
            go.Bar(name='Compliant', x=list(resource_compliance.keys()), 
                   y=[v['compliant'] for v in resource_compliance.values()]),
            go.Bar(name='Non-Compliant', x=list(resource_compliance.keys()), 
                   y=[v['non_compliant'] for v in resource_compliance.values()])
        ])
        
        fig.update_layout(
            barmode='stack',
            title='Resource Compliance by Type',
            height=400
        )
        
        return json.dumps(fig, cls=PlotlyJSONEncoder)

class MockComplianceDB:
    """
    Mock compliance database for demonstration
    """
    def get_current_compliance(self):
        return {
            'overall_compliance': 94.2,
            'frameworks': {
                'SOX': 96.5,
                'HIPAA': 92.1,
                'PCI-DSS': 95.8,
                'GDPR': 93.7
            },
            'trending': {
                'last_month': 91.8,
                'current': 94.2,
                'trend': 'up'
            },
            'recent_violations': [
                {'id': 'VIOL-001', 'type': 'Missing encryption', 'severity': 'High', 'timestamp': '2023-12-01T10:30:00Z'},
                {'id': 'VIOL-002', 'type': 'Unrestricted access', 'severity': 'Medium', 'timestamp': '2023-12-02T14:15:00Z'},
                {'id': 'VIOL-003', 'type': 'Missing audit log', 'severity': 'Low', 'timestamp': '2023-12-03T09:45:00Z'}
            ],
            'upcoming_audits': [
                {'framework': 'SOX', 'date': '2024-01-15', 'type': 'Quarterly'},
                {'framework': 'HIPAA', 'date': '2024-02-20', 'type': 'Annual'}
            ]
        }
    
    def get_historical_compliance(self, days):
        import random
        dates = [(datetime.now() - timedelta(days=i)).strftime('%Y-%m-%d') for i in range(days, 0, -1)]
        
        return {
            'SOX': [{'date': date, 'compliance_percentage': round(random.uniform(90, 98), 2)} for date in dates],
            'HIPAA': [{'date': date, 'compliance_percentage': round(random.uniform(88, 96), 2)} for date in dates],
            'PCI-DSS': [{'date': date, 'compliance_percentage': round(random.uniform(92, 99), 2)} for date in dates]
        }
    
    def get_violation_analysis(self):
        return {
            'Missing Encryption': 15,
            'Unrestricted Access': 8,
            'Missing Audit Logs': 12,
            'Outdated Software': 23,
            'Weak Authentication': 7
        }
    
    def get_resource_compliance(self):
        return {
            'Databases': {'compliant': 45, 'non_compliant': 3},
            'Applications': {'compliant': 67, 'non_compliant': 8},
            'Network Devices': {'compliant': 23, 'non_compliant': 2},
            'Storage Systems': {'compliant': 34, 'non_compliant': 1}
        }

class MockSecurityScans:
    """
    Mock security scan results
    """
    pass

class MockAuditLogs:
    """
    Mock audit logs
    """
    pass

dashboard = ComplianceDashboard()

@app.route('/api/compliance/summary')
def compliance_summary():
    """
    Get compliance summary
    """
    summary = dashboard.get_compliance_summary()
    return jsonify(summary)

@app.route('/api/compliance/trend-chart')
def compliance_trend_chart():
    """
    Get compliance trend chart
    """
    days = int(request.args.get('days', 90))
    chart_json = dashboard.get_compliance_trend_chart(days)
    return jsonify(json.loads(chart_json))

@app.route('/api/compliance/violation-chart')
def violation_analysis_chart():
    """
    Get violation analysis chart
    """
    chart_json = dashboard.get_violation_analysis_chart()
    return jsonify(json.loads(chart_json))

@app.route('/api/compliance/resource-chart')
def resource_compliance_chart():
    """
    Get resource compliance chart
    """
    chart_json = dashboard.get_resource_compliance_chart()
    return jsonify(json.loads(chart_json))

@app.route('/api/compliance/full-report')
def full_compliance_report():
    """
    Get full compliance report
    """
    summary = dashboard.get_compliance_summary()
    trend_chart = json.loads(dashboard.get_compliance_trend_chart())
    violation_chart = json.loads(dashboard.get_violation_analysis_chart())
    resource_chart = json.loads(dashboard.get_resource_compliance_chart())
    
    report = {
        'summary': summary,
        'charts': {
            'trend': trend_chart,
            'violations': violation_chart,
            'resources': resource_chart
        },
        'generated_at': datetime.utcnow().isoformat()
    }
    
    return jsonify(report)

if __name__ == '__main__':
    app.run(debug=True, port=5001)

Conclusion

DevSecOps compliance and governance require a fundamental shift from traditional compliance models to continuous, automated approaches. The key to success lies in implementing robust automation frameworks that can monitor, verify, and report compliance status in real-time while preserving the agility that DevSecOps provides.

Effective compliance in DevSecOps environments combines:

  • Automated evidence collection and storage
  • Real-time monitoring and alerting
  • Continuous risk assessment
  • Comprehensive audit trails
  • Integration with development and deployment pipelines

Organizations that successfully implement DevSecOps compliance and governance will achieve better security postures, more efficient compliance processes, and greater agility in responding to changing regulatory requirements.

In the next article, we'll explore DevSecOps incident response and threat management, examining how to detect, respond to, and recover from security incidents in DevSecOps environments.

You might also like

Browse all articles
Series

Scaling DevOps in Enterprise

Comprehensive guide to scaling DevOps practices across large enterprises, covering organizational structures, governance, and strategies for enterprise-wide DevOps adoption.

#Enterprise DevOps#Scaling#Governance
Series

Virtual Networking with VMware

Comprehensive guide to VMware virtual networking, including vSwitches, port groups, VLANs, and network configuration best practices.

#VMware#Networking#vSwitch
Series

vCenter Server and Centralized Management

Complete guide to VMware vCenter Server and centralized management, covering installation, configuration, and management of VMware environments.

#VMware#vCenter Server#Centralized Management
Series

Storage Virtualization with VMware

Complete guide to VMware storage virtualization, including datastore types, storage protocols, and storage management strategies.

#VMware#Storage#Datastore
Series

Security Best Practices in VMware Environments

Comprehensive guide to security best practices in VMware environments, covering ESXi hardening, vCenter security, network security, and compliance.

#VMware#Security#Hardening